Testing high dimensional covariance matrices via posterior Bayes factor
نویسندگان
چکیده
منابع مشابه
Optimal hypothesis testing for high dimensional covariance matrices
This paper considers testing a covariance matrix in the high dimensional setting where the dimension p can be comparable or much larger than the sample size n. The problem of testing the hypothesis H0 : = 0 for a given covariance matrix 0 is studied from a minimax point of view. We first characterize the boundary that separates the testable region from the non-testable region by the Frobenius n...
متن کاملOn the Testing and Estimation of High-Dimensional Covariance Matrices
Many applications of modern science involve a large number of parameters. In many cases, the number of parameters, p, exceeds the number of observations, N . Classical multivariate statistics are based on the assumption that the number of parameters is fixed and the number of observations is large. Many of the classical techniques perform poorly, or are degenerate, in high-dimensional situation...
متن کاملRegularized Estimation of High-dimensional Covariance Matrices
Regularized Estimation of High-dimensional Covariance Matrices
متن کاملShrinkage Estimators for High-Dimensional Covariance Matrices
As high-dimensional data becomes ubiquitous, standard estimators of the population covariance matrix become difficult to use. Specifically, in the case where the number of samples is small (large p small n) the sample covariance matrix is not positive definite. In this paper we explore some recent estimators of sample covariance matrices in the large p, small n setting namely, shrinkage estimat...
متن کاملTests for High-Dimensional Covariance Matrices
We propose tests for sphericity and identity of high-dimensional covariance matrices. The tests are nonparametric without assuming a specific parametric distribution for the data. They can accommodate situations where the data dimension is much larger than the sample size, namely the “large p, small n” situations. We demonstrate by both theoretical and empirical studies that the tests have good...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2021
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2020.104674